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The intensive use of compressor-driven cooling in the developed countries has both direct
and indirect negative effects on the environment that are realized on local and global
scales. Predicted increases in the use of air-conditioning in the developing countries will
magnify the range and scope of these effects. Much attention is therefore being given to
improving the efficiency of air-conditioning systems through the promotion of more
efficient cooling technologies.

One such alternative, radiant cooling, is the subject of this thesis. Performance information
from Western European buildings equipped with radiant cooling systems indicates that
these systems not only reduce the building energy consumption but also provide additional
economic and comfort-related benefits. Their potential in other markets such as the US has
been largely overlooked due to lack of practical demonstration, and to the absence of
simulation tools capable of predicting system performance in different climates.

This thesis describes the development of RADCOOL, a simulation tool that models
thermal and moisture-related effects in spaces equipped with radiant cooling systems. The
thesis then conducts the first in-depth investigation of the climate-related aspects of the
performance of radiant cooling systems in office buildings. The results of the investigation
show that a building equipped with a radiant cooling system can be operated in any US
climate with small risk of condensation. For the office space examined in the thesis,
employing a radiant cooling system instead of a traditional all-air system can save on
average 30% of the energy consumption and 27% of the peak power demand due to space
conditioning. The savings potential is climate-dependent, and is larger in retrofitted
buildings than in new construction.

This thesis demonstrates the high performance potential of radiant cooling systems across
a broad range of US climates. It further discusses the economics governing the US air-
conditioning market and identifies the type of policy interventions and other measures that
could encourage the adoption of radiant cooling in this market.
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